Integration operators on spaces of Dirichlet series

摘要✩:In this talk, we first study the Volterra operator $V$ acting on spaces of Dirichlet series. We prove that $V$ is bounded on the Hardy space $\h^p_0$ for any $0<p\leq\infty$, and is compact on $\h^p_0$ for $1<p\leq\infty$. Some dynamic properties of $V$ acting on $\h^p_0$ are also given. We then study the Volterra type integration operators $T_g$. We prove that if $T_g$ is bounded on the Hardy space $\h^p$, then it is bounded on the Bergman space $\h^p_w$. As applications, we characterize the boundedness of $T_g$ acting on $\h^p_w$ in the case that $g$ is a linear symbol or a multiplicative symbol.


报告人:王茂发

个人简介:武汉大学数学与统计杏鑫教授,博士生导师。主要研究方向是函数空间上的算子理论🔯。主持国家自然科学基金项目多项,在J. Funct. Anal.、J. Operator Theory,Math. Z.等知名期刊上发表学术论文数十篇。  


会议时间:2022/5/12  09:05-10:05

会议号: 482 628 913

密码:5207


网页发布时间: 2022-05-11
 
杏鑫专业提供🧟‍♂️:杏鑫等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流,杏鑫欢迎您。 杏鑫官网xml地图
杏鑫 杏鑫 杏鑫 杏鑫 杏鑫 杏鑫 杏鑫 杏鑫 杏鑫 杏鑫